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Abstract

Laminar mass transfer on a plane surface "electrode# deformed by a square micro!obstacle is numerically studied by
simulating the ~ow and mass transfer at the solid:liquid interface[ The obstacle has the same order of magnitude than
the di}usion layer thickness and thus a linear approximation for the velocity pro_le is used at the inlet ~ow section[ It
is shown that the velocity pro_le in the normal direction\ is disturbed in no more than three times the obstacle|s height[
It means that such micro!obstacle can be considered {invisible| from the bulk ~ow point of view[ On the other hand\ the
recirculating vortex behind the obstacle is found to have an enhancement e}ect on the mass transfer which is very
important and strongly increases with the Reynolds and the Schmidt numbers[ Þ 0888 Elsevier Science Ltd[ All rights
reserved[

Nomenclature

C active species local concentration
C� active species bulk concentration
Cw active species wall concentration
Ct wall shear coe.cient
D active species di}usion coe.cient
h obstacle height
H computational domain height
j wall current density
K mass transfer coe.cient
k dimensional kinetic constant of the electrochemical
reaction
k� non!dimensional kinetic constant of the electro!
chemical reaction
L computational domain length
LR recirculating region length
p pressure
p9 reference pressure
S9 wall velocity gradient at the inlet section
s non!dimensional curvilinear coordinate
u longitudinal velocity
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u9 reference velocity
v transversal velocity
x longitudinal coordinate
y transversal coordinate[

Greek symbols
d di}usion boundary layer at the inlet ~ow section
m dynamic viscosity
n kinematic viscosity
r electrolyte density
t wall shear stress
t9 wall shear stress at the inlet section[

Dimensionless numbers
Reh "� u9h:n# Reynolds number calculated with the
obstacle height
Red "� u9d:n# Reynolds number calculated with the
di}usion layer thickness at the inlet section
Sc "� n:D# Schmidt number
Sh "�"1C:1y# =wall:C�:d# local value of the Sherwood
number
Sh9 value of the Sherwood number at the inlet section
"s � 9#
Shm mean value of the Sherwood number[
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0[ Introduction

The topic of this paper is to discuss the numerical
computation of laminar ~ow and mass transfer around a
surface mounted obstacle[ During recent years\ several
papers dealing with ~ows past an enclosed or open back!
ward!facing step ð0\ 1\ 2Ł\ in a cavity ð3\ 4Ł\ and over a
surface mounted obstacle ð5\ 6\ 7Ł\ were published[ These
~ows which abound in nature and in industrial appli!
cations can now be studied by means of numerical
methods[ Calculations of the above mentioned ~ow con!
_gurations are in reasonable agreement with exper!
imental measurements and predict the main features of
these ~ows\ as for example ~ow separation and re!
attachment ð6\ 8Ł[ The related problem of heat transfer
in separation and reattachment regions has been studied
as well ð1\ 8\ 09Ł but not so intensively[ The calculations
of the e}ect on mass transfer remain rather limited ð00\
01\ 02Ł[

There are two di}erent situations when mass transfer
around a surface mounted obstacle is studied[ The _rst
one deals with obstacles which are larger than the near!
wall viscous layer[ The ~ow perturbations from such large
obstacles spread outside the viscous layer and can be a
cause of some mechanical phenomena as for example
increasing the hydrodynamical resistance[ In order to
treat the hydrodynamical problem in such a case\ a speci!
_ed velocity pro_le should be used as an upstream bound!
ary condition[

The other situation is dealing with obstacles which are
submerged into the viscous layer of the ~ow[ It relates to
a surface defect on a conducting wall or a protruding
micro!electrode also embedded in a conducting wall[ It
is also connected with turbulence promoters located on
a surface for the mass transfer enhancement[ In order to
treat the hydrodynamical problem in this case\ a linear
velocity pro_le can be used as an upstream boundary
condition[ Hydrodynamical perturbations from near!
wall obstacles subside within the viscous layer and their
e}ect on hydraulics characteristics\ as for example on a
resistance coe.cient of the ~ow ð03Ł\ are weak[ Such
obstacles can be called {invisible| from a hydraulic point
of view[ Nevertheless\ the above mentioned near!wall
hydrodynamical disturbances can be su.cient to sig!
ni_cantly perturbate the mass transfer[ The situation is
quite similar to turbulent mass transfer near a smooth
surface where the near!wall velocity ~uctuations do not
in~uence the mean velocity pro_le but have an e}ect on
the mass transfer[

From the numerical point of view\ hydrodynamical
and heat transfer problems are similar[ Indeed\ in the case
of classical heat transfer problems\ the Prandtl number
is around Pr ½ 0Ð09\ so the hydrodynamical and heat
boundary layers are of the same order of magnitude and
the numerical resolution is less complicated[ For mass
transfer problems the Schmidt number is very high

"×0999# and the di}usion layer thickness is at least one
order of magnitude smaller than the hydrodynamical one
ð04Ł[ The same situation occurs for heat transfer in high
viscosity and poorly heat conducting ~uids when
Pr ½ 099Ð0999[ In the case of high Prandtl and Schmidt
numbers\ the numerical problem becomes sharper as a
special care should be taken to the numerical grid[

Electrochemical processes are some of the important
examples which are related to the present study[ The ~uid
here\ an electrolyte solution\ is composed of elec!
trochemical species and one of them\ the electroactive
species\ reacts at the solid:liquid interface[ Depending on
the relative rate of the electrochemical process in com!
parison with that of the mass transport\ di}erent elec!
trochemical regimes can be distinguished[ The present
study focuses on the situation where the electrode process
is fast so the total reaction rate is controlled by mass
transport[ The electric current at the electrode is directly
related to the mass ~ux[ So\ the resolution of mass trans!
port problem provides the current distribution along the
electrode[ In this paper\ hydrodynamics and mass trans!
fer around surface mounted obstacle immersed into the
viscous sublayer of an electrolyte ~ow is studied by means
of numerical simulations[

1[ Mathematical formulation

The situation examined here "Fig[ 0# is that of an
electrolyte ~ow along a plane electrode ðAFŁ[ The ~ow is
disturbed by a square micro!obstacle ðBCDEŁ of height h\
located far enough from the leading edge of the electrode[
Because the enhancement of mass transfer due to the
perturbation is local\ only a portion of the electrode ðAFŁ
surrounding the protruding obstacle is studied[ Con!
sidering only the region in the very close vicinity of the
wall\ the velocity pro_le in the inlet section can be sup!
posed linear[ Therefore\ the ~ow is characterised by the
wall velocity gradient S9[ Concerning the mass transfer\
it is characterised at the inlet section by means of mass
~ux density on the wall j9 or di}usion layer thickness
d � DC�:j9[ A cubic approximation is used for the inlet
concentration pro_le "to be precised later#[ The mass
transfer is examined _rstly for an in_nite electrochemical
reaction rate "di}usion limited regime# and secondly for
a _nite one[

1[0[ Governin` equations

Two!dimensional ~ow and mass transfer around a sur!
face mounted obstacle can be described by means of the
classical continuity\ momentum and convection!di}usion
equations ð04Ł[

To achieve the calculations\ these equations and the
corresponding boundary conditions are made dimen!
sionless[ The characteristic scales
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Fig[ 0[ Computational domain[
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are used for that purpose[ Therefore\ the governing equa!
tions in non!dimensional form can be written as]
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It should be noted here that another Reynolds number
can also be introduced[ This number is based on the
height h and de_ned as Reh � S9h

1:n and is related by the
factor "d:h#1 to Red[

The applied boundary conditions expressed in the
dimensionless form are]

"i# wall boundary ðABCDEFŁ

, non slip condition at the wall
u� � 9 and v� � 9

, _nite or in_nite electrochemical reaction rate

1C�
1n bwall

� k� = C�w or C�w � 9 "k� �: �#

where k� �
k

D:d
is the non!dimensional kinetic con!

stant of the electrochemical reaction and n is the direc!
tion normal to the wall[

"ii# inlet boundary ðAHŁ

, linear velocity pro_le
u� � y� and v� � 9

, cubic pro_le approximation for concentration

6
C� � a0 = y�2¦a1 = y�1¦a2 = y�¦a3 if y� ³ 0

C� � 0 if y� − 0

The coe.cients ak are chosen so as to satisfy the following
conditions]

, at the upper limit of the di}usion layer^

C�"0# � 0 and
1C�
1y� by��0

� 9 "4#

, at the wall the condition "i# is supposed to be valid[
Then the wall concentration and the mass ~ux can be
written as

C�w �
0

0¦k�
and

1C�
1y� by��9

�
0

0¦0:k�
[ "5#

This leads to the following expressions for the di}erent
coe.cients\

a0 � −
k�

0¦k�
\ a1 �

k�
0¦k�

\
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a2 �
1C�
1y� by��9

�
0

0¦0:k�
\ a3 � C�w �

0
0¦k�

[ "6#

When the electrode process is very fast\ i[e[ k� Ł 0\ those
coe.cients take the values]

a0 � −0\ a1 � 0\ a2 � 0\ a3 � C�w � 9[ "7#

"iii# upper boundary ðHGŁ

, constant longitudinal velocity

u� � 7h:d and
1v�
1y�

� 9

, bulk concentration

C� � 0

"iv# outlet boundary ðFGŁ

, constant pressure
p� � 0

, zero longitudinal mass ~ux

1C�
1x�

� 9

1[1[ Numerical procedure

The equations were solved using the industrial code
FLUENT which applies _nite volume concepts to the
discretisation of all the equations on a non!staggered
grid[ This code is not originally designed to deal with
mass transfer problems\ but rather with hydrodynamics
and heat transfer\ so special care was taken to the grid[
In the following calculations the grid system is rectilinear
with unequal spacing[ Nodes are more closely spaced in
the vicinity of the solid boundary and of the sharp edges
of the surface mounted rib[ Typically\ the nodes spacing
is ten times smaller around the rib and near the wall\ so
that the wall shear stress and the mass ~ux are more
precisely calculated[ The second order scheme QUICK is
employed for the variable interpolation and the SIM!
PLEC algorithm is used for the resolution of the whole
set of equations[ The computations are performed on a
Hewlett Packard HP699 computer\ using a 094×34 non!
uniform grid system[ The grid elements distribution is
chosen so that the di}usion layer is described with at
least 09 elements for all cases[ So the cells distribution is
de_ned with respect to a less favorable case "cor!
responding here to a high value of the Reynolds number\
Reh � 25[5\ and a high value of the Schmidt number
Sc � 1999# and kept all along[

The numerical solution of momentum and continuity
equations are _rst completed\ then the obtained velocity
and pressure _elds are used to solve the electroactive
species transport equation[ To validate the numerical
approach used in the present study\ initial calculations
are performed for the laminar mass transfer over a ~at
plate\ known as the Levich problem ð04Ł[ The results are
in good agreement with the existing analytical solution[

1[2[ Computational domain

The computational domain height is chosen large
enough so that the in~uence of the boundary conditions
on the wall shear stress is very weak[ Tests were made
in order to determine that height and also the lengths
upstream and downstream of the obstacle[ It was found
that the friction factor is varied within 09) of accuracy
if the height H of the computational domain is varied
from H � 05h to H � 4h and within 4) of accuracy if it
is varied from H � 05h to H � 7h[ The height of the
computational domain is then chosen such as^ height
ðAHŁ � H � 7h[ Furthermore\ if the entrance length
"before the obstacle# of the computational domain is
about 09h\ the ~ow just after the inlet section boundary
"x � 9# is not perturbated by the presence of the obstacle[
Also\ the length after the obstacle is chosen su.ciently
large so that the perturbation generated by the obstacle
is no more perceptible at the outlet section[ So the total
length is ðABEFŁ �L � 60h\ except for the cases where
only a qualitative estimation of the behaviour around the
obstacle is necessary\ in those cases ðABEFŁ � L � 20h[

2[ Results and discussion

For the presentation of the results\ we used the speci_c
non!dimensional curvilinear coordinate s along the solid
surface including the surface of the obstacle "using h as
a reference scale#[ The di}erent values of that coordinate
are represented on Fig[ 0[ In order that the Figures be
clear enough\ the lengths along the obstacle have been
stretched by a factor 3[ Thus the values 09¾ s ¾ 03 cor!
respond to its front side ðBCŁ\ 03 ¾ s ¾ 07 to its upper
side ðCDŁ and 07¾ s ¾ 11 to its rear side ðDEŁ[

2[0[ Flow around surface mounted obstacle

Our goal is to study the in~uence of very small
obstacles on the mass transfer rate[ Figure 1 shows the
rapid decay of the velocity perturbations within the vis!
cous sublayer[ In the normal "y# direction the velocity
pro_le is not perturbated in a distance larger than 1Ð2
times the obstacle height[ On the other hand\ near the
surface\ velocity perturbations spread signi_cantly down!
stream from the obstacle "Fig[ 2#[

Figures 3 and 4 show the local friction coe.cient Ct

along the solid surface for di}erent ~ow velocities
"di}erent values of Reh#[ This quantity is de_ned as

Ct �
t

m = u9:d
"8#

where

t � m =
1u
1ybwall

or m =
1v
1xbwall

"09#
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Fig[ 1[ Longitudinal velocity pro_les at the inlet section "x� � 9# and outlet section "x� � 20#\ on the obstacle near the corners
x� ½ 09[907 and x� ½ 09[973\ and in the recirculating zone x� ½ 00[16 and x� ½ 02[22[ Reh � 25[5\ h � d[

Fig[ 2[ Typical streamlines] Reh � 05[5\ h � d[

depending on the wall direction "horizontal or vertical
respectively#[

The in~uence of the obstacle on the ~ow upstream
extend to a region which covers about 3Ð4 obstacle
height[ In that region the wall shear stress decreases mon!
otonously down to the zero value[ At the foot of the
obstacle a small vortex is formed[ There is no important
in~uence of the Reynolds number Reh on the velocity
pro_le upstream from the obstacle[

On the front side of the obstacle\ wall shear stress
values are positive and increase monotonously if the Rey!
nolds number is not too small "Reh − 2#[ For small Rey!
nolds numbers we can notice the existence of negative
values of the wall shear stress[ It means that a re!

attachment vortex is formed near the front side of the
obstacle[

On the upper side of the obstacle a new boundary layer
is formed[ In this region the wall shear stress value is
much more important than that at the inlet section
"x � 9#[ The _rst peak which appears on Fig[ 3\ cor!
responds to the beginning of the upper viscous boundary
layer[ The local very thin thickness of this layer produces
very high values of the shear stress[ The in~uence of
the Reynolds number on the wall shear stress is rather
signi_cant[ The peak which appears at the end of the
upper section of the obstacle can be explained by the
sudden discontinuity at the corner of the obstacle[ The
same peaks were found as well in other numerical simu!
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Fig[ 3[ Dimensionless wall shear stress coe.cient for small values of Reynolds number] Reh � "0] 9[55\ 1] 0\ 2] 2\ 3] 4[87\ 4] 09[5#\
h � d[

Fig[ 4[ Dimensionless wall shear stress coe.cient for moderate values of the Reynolds number] "0] 09[5\ 1] 05[5\ 2] 15[5\ 3] 25[5\ 4]
55[3#\ h � d[
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Fig[ 5[ Logarithmic plot of the recirculating ~ow length vs the Reynolds number] h � d\ Sc � 0999[

lations of ~ow and heat or mass transfer around an
obstacle ð7\ 09Ł[

The rear side of the obstacle is characterised by small
values of the wall shear stress[ Downstream from the
obstacle\ a recirculating region corresponding to a vortex
is formed[ Its size can be characterised by the position of
the reattachment point "x � LR#[ It is obvious that the
vortex size increases with the increasing Reynolds num!
ber "Fig[ 5#[ After the ~ow reattachment\ a new boundary
layer is formed and the wall shear stress tends to its initial
value[ The ~ow behaviour moves back to the situation of
a ~uid ~owing along a ~at plate[

2[1[ Mass transfer calculations

Figures 6 and 7 give the concentration pro_les for
di}erent longitudinal positions and the isoconcentration
lines[ One can see the existence of a {concentration eddy|
downstream from the obstacle[ The concentration pro_le
in that zone has two {di}usion layers|^ one in the vicinity
of the electrode surface and the other one at the upper
limit between the recirculating zone and the external ~ow[
The di}usion layer above the obstacle has no pecu!
liarities\ and its thickness is very small compared to the
obstacle height[

The ~ow around the obstacle is characterised by one
dimensionless parameter Red[ Two more parameters\ the
Schmidt number Sc and the ratio of the obstacle height
to the di}usion layer thickness at the inlet\ h:d\ have to

be taken into account to characterise the mass transfer
problem[ The mass ~ux distribution along the surface for
di}erent values of the Reynolds number Red is given on
Figs 8 and 09 for Sc � 0999 and h � d[ It is de_ned
through the classical Sherwood number]

Sh �
j = d

D = C�

where j � D = 9C=wall "00#

with respect to the reference value at the inlet section[

2[1[0[ In~uence of the Reynolds number
Qualitatively\ upstream and on the obstacle\ the mass

~ux distribution is similar to the wall shear "Figs 8 and
09#[ So\ we can observe that Reynolds analogy is quan!
titatively valid for this region[ Everywhere on the upper
side of the obstacle the mass transfer rate is more im!
portant than at the inlet[

Downstream from the obstacle\ the in~uence of the
recirculating vortex on mass transfer is noticeable[ For
the high value of Red\ that in~uence spreads very far[
Mass ~ux and wall shear stress distributions downstream
from the obstacle are qualitatively di}erent[ It means that
Reynolds analogy cannot be used for the prediction of
the mass transfer which is governed by a vortex[ As shown
on Fig[ 6\ the concentration gradient in the bulk of that
region and thus the di}usion process is negligible[ Con!
vection carries ~uid from the near!wall region where it is
impoverished in active species by di}usion\ to the upper
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Fig[ 6[ Concentration pro_les at di}erent locations "obstacle � x� ½ 09[907 and x� ½ 09[973^ recirculating zone � x� ½ 00[16 and
x� ½ 02[22#] Reh � 25[5\ h � d\ Sc � 0999[

Fig[ 7[ Typical isoconcentration lines] Red � 05[5\ h � d\ Sc � 0999[

boundary of the recirculation zone where di}usion pro!
cess tends again to enrich it in active species[

Plots of the mean value of the Sherwood number Shm

de_ned as

Shm �
0

LR gLR

Sh"s# ds\

LR being the recirculating region length "01#

vs the Reynolds and Schmidt number on the recirculating
region length "Fig[ 00#\ characterises the evolution of
the mass transfer[ A correlation which supposes classical
dependency with the Schmidt number "i[e[ a Sherwood
number varying as a power 0:2 of the Schmidt as it is the
case for mass transfer on a ~at plate# is searched on a
power law form[ The result obtained\

Shm � 9[9243Re9[310
h = Sc9[222 "02#

_ts well with the numerical data[ The exponent of the
Reynolds number is not very far from the classical value\
9[4[ The di}erence could be related to the fact that the
eddy structure is the dominant parameter which depends
on the Reynolds number[ The situation is then not the
same as in a classical problem characterised by a simple
and imposed hydrodynamics corresponding to a bound!
ary layer development along a ~at plate[ It can also be
noticed on the Figure that for the low value of the Rey!
nolds number\ the Sherwood number is lower than one
which is the value obtained without obstacle[ This means
that\ in this condition\ the recirculating motion in the
vortex is not su.ciently intensive and then the transport
of electroactive species by the vortex is less e}ective than
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Fig[ 8[ Local Sherwood number for small values of the Reynolds number] Reh � "0] 9[55\ 1] 0\ 2] 2\ 3] 4[87\ 4] 09[5#\ h � d\ Sc � 0999[

Fig[ 09[ Local Sherwood number for moderate values of the Reynolds number] Reh � "0] 09[5\ 1] 05[5\ 2] 15[5\ 3] 25[5\ 4] 55[3#\ h � d\
Sc � 0999[

di}usivity of species across an unperturbated di}usive
layer[ When the Reynolds number increases the intensity
of the downstream vortex also increases and for a typical

value of the product Re9[310
h = Sc9[222 larger than 29\ the

mass transfer is improved\ compared to the reference
value ½0[9[
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Fig[ 00[ Evolution of the mean value of the Sherwood number along the recirculating region length vs a correlation of the Reynolds
and Schmidt numbers[

2[1[1[ In~uence of the Schmidt number
For given values of both velocity gradient and con!

centration pro_le at the inlet section\ Figs 01 and 02 give
the evolution of the mass transfer for di}erent Schmidt
numbers when an obstacle of size h � d disturbs the ~ow[
This evolution is characterised by the variation of the
ratio Sh:Sh9"� Sh"s#:Sh"s � 9## along the curvilinear
coordinate s\ Sh9 being the local value of the Sherwood
number at the inlet "s � 9#[

For a small value of the Reynolds number\ Fig[ 01
shows that the in~uence of the Schmidt number on the
mass transfer is not very important[ This results from the
fact that the hydrodynamics perturbation is not intensive
and limits by itself the exchange processes[

For moderately high values of the Reynolds number\
Fig[ 02 shows on the contrary that the mass transfer rate
depends on the Schmidt number\ especially in the regions
where the hydrodynamics perturbation is high[ This is
the case\ at the top of the obstacle "zone CÐD\ Fig[ 0#
and in the recirculating region behind the obstacle "zone
of length LR#[ For higher values of the Reynolds number
"not shown here# that trend is con_rmed[

2[1[2[ In~uence of the ratio h:d
The in~uence of the ratio h:d on the mass transfer rate

is presented on Fig[ 03 for constant Schmidt number]
Sc � 0999 and Reynolds number] Red � 05[5[ The mass
transfer rate increases monotonously with the obstacle

height\ consequence of the increasing wall shear stress
speci_cally in the recirculating ~ow region[ Even for very
small obstacles the mass transfer rate on the upper side
of the obstacle is at least twice as much as that at the
inlet section[ If the height of the obstacle is two times the
di}usion layer thickness\ the mass transfer rate increases
by about one order of magnitude in comparison with the
inlet value[ In this case\ hydrodynamic perturbation of
the mean ~ow can be expected[

2[1[3[ In~uence of the interfacial transfer rate
All the above mentioned results have concerned the

case of in_nite rate of the interfacial transfer process[ If
one takes into account the _nite rate of the elec!
trochemical reaction\ one additional parameter appears
"a non!dimensional kinetic constant k�#[ Figure 04 dem!
onstrates the in~uence of this parameter on the mass
transfer rate[ For slow reaction rates\ k� is about unity\
the perturbation introduced by the obstacle does not
in~uence the mass transfer[ The local Sherwood number
values Sh before and after the obstacle remains almost
unchanged\ in that case the charge transfer through the
interface controls the electric current[ For higher values
of k�\ hydrodynamic in~uence appears[ In agreement
with the heterogeneous process theory ð04Ł\ the maximum
rate of the mass ~ux is obtained for a fully mass transport
control regime\ corresponding to in_nite value of k�[
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Fig[ 01[ In~uence of the Schmidt number on the local Sherwood number for a small value of the Reynolds number] Sc � "0] 499\ 1]
0999\ 2] 0499\ 3] 1999#\ Reh � Red � 4[87[

Fig[ 02[ In~uence of the Schmidt number on the local Sherwood number for moderate values of the Reynolds number] Sc � "0] 499\
1] 0999\ 2] 0499\ 3] 1999#\ Reh � Red � 25[5[
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Fig[ 03[ In~uence of the size of the obstacle on the local Sherwood number] "0] h � 9[1 d\ 1] h � 9[5d\ 2] h � d\ 3] h � 1d#\ Sc � 0999[

Fig[ 04[ In~uence of the rate of the reaction on the local dimensionless Sherwood number\ h � d] Reh � Red � 05[5] "0] k� � 0\ 1]
k� � 09\ 2] k� � 099\ 3] k� � �#\ Sc � 0999[
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3[ Conclusion

Numerical simulations of mass transfer in laminar ~ow
show that micro!obstacles\ hydrodynamically {invisible|
from the bulk ~ow point of view\ may increase sig!
ni_cantly the mass transfer rate[ It means that for fast
heterogeneous reactions the surface reactivity can be
increased signi_cantly by means of small modi_cations
of the surface geometry[ The increment in the mass trans!
fer rate is due to two factors[ At _rst\ on the upper side
of the obstacle it is induced by the local hydrodynamic
boundary layer development[ This factor has a local
character\ it means that the additional mass ~ux is pro!
portional to the obstacle|s surface[ Another cause of that
increment is the recirculating vortex[ This vortex\ formed
downstream\ is stretched in the ~ow direction and its
in~uence covers an important zone[ The mass transfer
initiated by it\ is quite di}erent from the one in the
developing di}usion layer[ The concentration pro_le in
this zone has two {di}usion layers|\ in the vicinity of the
surface and at the interface between the recirculating
zone and the external ~ow[ The consequence is that the
Reynolds analogy cannot be used in order to predict the
mass transfer which is governed by the near!wall eddy
structures[

References

ð0Ł I[E[ Barton\ Laminar ~ow past an enclosed and open back!
ward!facing step\ Physics of Fluids 5 "01# "0883# 3943Ð
3945[

ð1Ł M[ Pingping\ L[ Xianming\ N[K[ David\ Heat and mass
transfer in a separated ~ow region for high Prandtl and
Schmidt numbers under pulsatile conditions\ Int[ J[ Heat
and Mass Transfer 26 "06# "0883# 1612Ð1625[

ð2Ł R[J[ Goldstein\ V[L[ Ericksen\ R[M[ Olson\ E[R[G[ Eckert\
Laminar separation\ reattachment\ and transition of the

~ow over a downstream!facing step\ J[ Basic Engineering\
Trans[ of ASME "0869# 621Ð630[

ð3Ł A[ Bhatti\ W[ Aung\ Finite di}erence analysis of laminar
separated forced convection in cavities\ J[ Heat Transfer
095 "1# "0873# 38Ð43[

ð4Ł H[ Nam Chang\ H[W[ Ryu\ D[H[ Park\ et al[\ E}ect of
external laminar channel ~ow on mass transfer in a cavity\
Int[ J[ Heat and Mass Transfer 29 "09# "0876# 1026Ð1038[

ð5Ł S[S[ Hsieh\ D[Y[ Huang\ Flow characteristics of laminar
separation on surface!mounted ribs\ AIAA 14 "5# "0876#
708Ð712[

ð6Ł Y[J[ Hong\ S[S[ Hsieh\ H[J[ Shih\ Numerical computation
of laminar separation and reattachment of ~ow over sur!
face!mounted ribs\ J[ Fluids Engineering\ Trans[ of ASME
022 "5# "0880# 089Ð087[

ð7Ł F[ Ferrigno\ P[F[ Brevet\ H[H[ Girault\ Finite element
simulation of the amperometric response of recessed and
protruding microband electrodes in ~ow channels\ J[ Elec!
troanalytical Chemistry 329 "0886# 124Ð131[

ð8Ł T[ Kondoh\ Y[ Nagano\ T[ Tsuji\ Computational study of
laminar heat transfer downward of a backward!facing step\
Int[ J[ Heat and Mass Transfer 25 "2# "0882# 466Ð480[

ð09Ł S[S[ Hsieh\ H[J[ Shih\ Y[J[ Hong\ Laminar forced con!
vection from surface!mounted ribs\ Int[ J[ Heat and Mass
Transfer 22 "8# "0889# 0876Ð0888[

ð00Ł P[ Legentilhomme\ J[ Legrand\ Mode�lisation nume�rique du
transfert de matie�re dans un e�coulement annulaire faible!
ment tourbillonnaire non entretenu\ Can[ J[ Chem[ Eng[ 60
"0882# 188Ð200[

ð01Ł M[ Ould!Rouis\ A[ Salem\ J[ Legrand\ C[ Nouar\ Etude
nume�rique et expe�rimentale du transfert de matie�re et de
quantite� de mouvement dans un e�coulement annulaire lam!
inaire non e�tabli\ Int[ J[ Heat and Mass Transfer 27 "0884#
842Ð846[

ð02Ł P[ Olivas\ F[H[ Bark\ On unsteady electrochemical coating
of a cylinder at moderately large Reynolds number\ Journal
of Appl[ Electrochemistry 16 "0886# 0258Ð0268[

ð03Ł H[ Schlichting\ Boundary!layer Theory\ 5th ed[\ McGraw!
Hill Book Company\ 0857[

ð04Ł V[G[ Levich\ Physicochemical Hydrodynamics[ Chap II\
VI\ Prentice!Hall\ Inc[\ Englewood Cli}s\ NJ\ 0863[


